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Abstract This article complements the paper (Jongen, Stein, Smoothing by mollifers part I:
semi-infinite optimization J Glob Optim doi:10.1007/s10898-007-9232-3), where we showed
that a compact feasible set of a standard semi-infinite optimization problem can be approx-
imated arbitrarily well by a level set of a single smooth function with certain regularity
properties. In the special case of nonlinear programming this function is constructed as the
mollification of the finite min-function which describes the feasible set. In the present article
we treat the correspondences between Karush–Kuhn–Tucker points of the original and the
smoothed problem, and between their associated Morse indices.
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1 Introduction

We consider the constrained nonlinear programming problem

P : min
x∈Rn

f (x) subject to gi (x) ≥ 0, i ∈ I,

with objective function f ∈ C2(Rn, R), constraint functions gi ∈ C2(Rn, R), i ∈ I , and a
finite index set I = {1, . . . , p} with p ∈ N. We denote the feasible set of P by M = {x ∈
R

n | gi (x) ≥ 0, i ∈ I }.
In [7] we show that a nonempty and compact feasible set M of a semi-infinite program

can be approximated arbitrarily well by a level set of a single smooth function with certain
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regularity properties. This function is constructed by using a so-called mollifier. Moreover, a
correspondence between Karush–Kuhn–Tucker points of the original and the smoothed prob-
lem, along with their Morse indices, enables us to prove the connectedness of the so-called
min-max digraph for semi-infinite problems.

On the one hand the result about Morse indices has a very elaborate proof, and moreover it
is basically related to finite, and not semi-infinite programming. Thus, we treat it in the pres-
ent, separate article. We also reformulate the results from [7] about smoothing by mollifiers
for the present setting of nonlinear programming.

A different smoothing procedure for nonlinear programming problems is given in [6].
There the main idea is to use the logarithmic barrier approach to approximate the finitely
many inequality constraints gi (x) ≥ 0, i ∈ I, by one smooth and nondegenerate constraint∑

i∈I ln(gi (x)) ≥ ln(ε) for ε > 0. A similar approach is taken in [4] to smooth finite max-
imum functions. In [7] we explain why several obvious generalizations of this approach to
semi-infinite programming are not successful. This motivates our investigation of smoothing
by mollifiers for semi-infinite as well as finite optimization problems.

To our knowledge there is little work on the use of mollifiers in optimization. A basic ref-
erence for the definition of subgradients for certain discontinuous functions by mollification
is [2].

2 Preliminaries

2.1 Regularity concepts

At a feasible point x̄ ∈ M the Mangasarian-Fromovitz Constraint Qualification (MFCQ,
[8]) is said to hold if there exists some vector d ∈ R

n with

Dgi (x̄) d > 0, i ∈ I0(x̄). (2.1)

Here I0(x̄) = {i ∈ I | gi (x̄) = 0} is the active index set at x̄ , and Dgi (x̄) denotes the row
vector of partial derivatives of the function gi at x̄ . We will abbreviate the corresponding col-
umn vector of partial derivatives with ∇gi (x̄). Furthermore, sometimes we will write gI0(x̄)

for the column vector of functions gi , i ∈ I0(x̄).
The (stronger) Linear Independence Constraint Qualification (LICQ) is satisfied at x̄ ∈

M if the vectors Dgi (x̄), i ∈ I0(x̄), are linearly independent. Note that LICQ implies
|I0(x̄)|≤n.

A point x̄ ∈ M with LICQ is called a critical point for P if there exist real numbers
λ̄i , i ∈ I0(x̄), (Lagrange multipliers) such that

D f (x̄) =
∑

i∈I0(x̄)

λ̄i Dgi (x̄). (2.2)

A critical point is called Karush–Kuhn–Tucker point (KKT-point) if all multipliers in (2.2)
are nonnegative, λ̄i ≥ 0, i ∈ I0(x̄), and a KKT point is called nondegenerate if the following
two conditions hold:

(SCS) : λ̄i > 0, i ∈ I0(x̄) (strict complementary slackness),
(SOSC) : D2 L(x̄)|Tx̄ M is nonsingular (second order sufficiency condition).

123



J Glob Optim (2008) 41:335–350 337

The matrix D2 L stands for the Hessian of the Lagrange function L ,

L(x) = f (x) −
∑

i∈I0(x̄)

λ̄i gi (x), (2.3)

and Tx̄ M denotes the tangent space of M at x̄ ,

Tx̄ M = {d ∈ R
n | Dgi (x̄)d = 0, i ∈ I0(x̄)}. (2.4)

Condition SOSC means that the matrix V � D2 L(x̄)V is nonsingular, where V is some (n, n−
|I0(x̄)|)—matrix whose columns form a basis for the tangent space Tx̄ M . The number of
negative eigenvalues of V � D2 L(x̄)V is called the Morse index of x̄ . In particular, a nonde-
generate KKT point is a local minimizer for P iff its Morse index vanishes.

2.2 Mollifiers

With the Euclidean norm ||·||2 on R
n , the standard mollifier (cf., e.g., [3]) is the C∞−function

η(x) =
⎧
⎨

⎩

C exp

(
1

||x ||22−1

)

, ||x ||2 < 1

0, ||x ||2 ≥ 1,

where C > 0 is chosen such that
∫

Rn η(x) dx = 1. For ε > 0 we set

ηε(x) = 1

εn
η

( x

ε

)
. (2.5)

The function ηε is also C∞, it satisfies
∫

Rn ηε(x) dx = 1, and its support {x ∈ Rn | ηε(x) �= 0}
is the closed ball B(0, ε) with B(0, ε) = {x ∈ R

n | ||x ||2 < ε}, where A denotes the topolog-
ical closure of a set A.

Definition 2.1 For ε > 0 the ε−mollification of a locally integrable function F : R
n → R

is the convolution Fε = ηε ∗ F on R
n, that is,

Fε(x) =
∫

Rn
ηε(x − z)F(z) dz =

∫

B(0,ε)

ηε(z)F(x − z) dz

for all x ∈ R
n.

Theorem 2.2 ([3])

(a) For all ε > 0, the ε−mollification Fε is in C∞(Rn, R).
(b) If F is continuous on R

n, then Fε converges to F uniformly on compact sets for ε → 0.

For further details about mollifiers we refer the interested reader to [3].

3 The smoothing approach

3.1 Main results

Throughout this section we make the following three assumptions.

Assumption 3.1 The feasible set M of P is nonempty and compact.
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Assumption 3.2 The MFCQ holds everywhere in M.

Assumption 3.3 All KKT points of P are nondegenerate.

With

G(x) = min
i∈I

gi (x)

the feasible set M can obviously be described by the single but arguably nonsmooth constraint
G(x) ≥ 0. Our smoothing approach is based on the mollification of G,

Gε = ηε ∗ G = ηε ∗ min
i∈I

gi (·).

In view of Theorem 2.2 the function Gε is C∞ for each ε > 0, and Gε converges to G
uniformly on compact sets for ε → 0.

Intuitively, for sufficiently small ε > 0 the set

Mε = {x ∈ R
n | Gε(x) ≥ 0},

and the smooth finite optimization problem

Pε : min
x∈Rn

f (x) subject to Gε(x) ≥ 0

should be strongly related to M and P , respectively. We will make this statement precise in
the following theorems, which hold under our general Assumptions 3.1–3.3.

Theorem 3.4 Mε converges to M in the Hausdorff distance for ε → 0.

Theorem 3.5 For all sufficiently small ε > 0, MFCQ holds everywhere in the set Mε.

Theorem 3.6 For all sufficiently small ε > 0, the set Mε is homeomorphic with M.

Theorem 3.7

(a) The set K K T ( f, M) of Karush–Kuhn–Tucker points of P is finite.
(b) For each x̄ ∈ K K T ( f, M) let U (x̄) be some neighborhood of x̄ . Then outside the sets

U (x̄), x̄ ∈ K K T ( f, M), the problem Pε has no KKT points for sufficiently small ε > 0.
(c) The neighborhoods U (x̄), x̄ ∈ K K T ( f, M), from part b) can be chosen such that each

U (x̄) contains exactly one KKT point xε of Pε for sufficiently small ε > 0. Moreover,
xε is nondegenerate, and the Morse index of x̄ in P and the Morse index of xε in Pε

coincide.

Corollary 3.8 Let ε > 0 be sufficiently small. Then Assumptions 3.1, 3.2 and 3.3 do not
only hold for P, but also for Pε, and the local minimizers of Pε are located arbitrarily close
to those of P. Moreover, if M is connected, so is Mε .

Theorems 3.4, 3.5, 3.6, and parts (a) and (b) of Theorem 3.7 are shown in the separate arti-
cle [7], even for the more general setting of semi-infinite programming. Corollary 3.8 is an
immediate consequence of Theorems 3.4, 3.5, 3.6 and 3.7.

Thus, here we can concentrate on the proof of Theorem 3.7(c). We break down the proof
into several steps which are treated in the following subsections.
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3.2 Formulae for Gε, its gradient, and its Hessian

From now on we fix some nondegenerate KKT point x̄ of P . For x̄ from the interior of M ,
Theorem 3.4 implies that x̄ is also an interior point of Mε for sufficiently small ε > 0, so
that the assertion of Theorem 3.7(c) trivially holds for x̄ with xε ≡ x̄ . Note that in this case
∇ f (x̄) vanishes.

Hence, in the following let x̄ be a boundary point of M , so that the active index set
I0(x̄) of x̄ is necessarily nonempty. Since all our considerations will concern M only locally
around x̄ , without loss of generality we may assume that I0(x̄) coincides with I , that is, we
have g(x̄) = 0 for the vector function g := gI = gI0(x̄) . Furthermore, we will abbreviate
I(i) := I \ {i} for i ∈ I . Note that the nondegeneracy of the KKT point implies ∇ f (x̄) �= 0.

The following sets will play a major role in the sequel:

Si = {x ∈ R
n | gi (x) < g j (x), j ∈ I(i)}, i ∈ I, (3.1)

�i j = {x ∈ R
n | gi (x) = g j (x)}, i, j ∈ I, i �= j. (3.2)

In fact, to take first and second derivatives of

Gε(x) =
∫

Rn
ηε(x − z) min

i∈I
gi (z) dz

at x̄ , we rewrite Gε(x) as a sum of integrals with smooth integrands on the subdomains
Si , i ∈ I :

Lemma 3.9
(a) For all i ∈ I and all x ∈ Si we have G(x) = gi (x).
(b) There exists some R > 0 with B(x̄, R) ⊂ ⋃

i∈I Si , where Si denotes the topological
closure of Si , i ∈ I .

(c) For all x ∈ R
n and ε > 0 with ||x − x̄ || + ε < R we have

Gε(x) =
∑

i∈I

∫

Si
ηε(x − z)gi (z) dz.

Proof The assertion of part (a) is clear from the definitions of Si , i ∈ I , and G.
To see part (b), consider the sets

S̃i = {x ∈ R
n | gi (x) ≤ g j (x), j ∈ I(i)}, i ∈ I,

which all contain x̄ . It is not hard to see that LICQ at x̄ in M implies LICQ at x̄ in S̃i for
each i ∈ I . By continuity, for each i ∈ I there exists some Ri > 0 such that LICQ holds
everywhere in S̃i ∩ B(x̄, Ri ). Under LICQ it is well known that S̃i and Si coincide, that is, we
have S̃i ∩ B(x̄, Ri ) = Si ∩ B(x̄, Ri ) for each i ∈ I . With R = mini∈I Ri consider any point
x ∈ B(x̄, R). Then for each i ∈ I with gi (x) = G(x) we have x ∈ Si , that is, x ∈ ⋃

i∈I Si .
For part (c) recall that the support of ηε is B(0, ε), so that we may write

Gε(x) =
∫

B(x,ε)

ηε(x − z)G(z) dz.

Since the assumption ||x − x̄ ||+ ε < R implies B(x, ε) ⊂ B(x̄, R), and we have B(x̄, R) ⊂
⋃

i∈I Si by part b), we may replace the domain of integration by

B(x, ε) ∩
⋃

i∈I

Si =
⋃

i∈I

(
B(x, ε) ∩ Si

)
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to obtain

Gε(x) =
∑

i∈I

∫

B(x,ε)∩Si
ηε(x − z)G(z) dz.

As the integrand vanishes outside of B(x, ε), and in view of LICQ in Si , we may further
replace the domain of integration in each summand by Si , so that part a) yields the assertion.

�

In the following we put

�i j (x) = ∇gi (x) − ∇g j (x) (3.3)

for i, j ∈ I, i �= j , and x ∈ R
n .

Proposition 3.10 For all x ∈ R
n and ε > 0 with ||x − x̄ ||+ε < R the gradient and Hessian

of Gε at x satisfy

DGε(x) =
∑

i∈I

∫

Si
ηε(x − z)Dgi (z) dz

and

D2Gε(x) =
∑

i∈I

∫

Si
ηε(x − z)D2gi (z) dz −

∑

i �= j∈I

∫

�i j
ηε(x − z)

�i j (z)�i j (z)�

||�i j (z)|| dz,

where the last term is a boundary integral.

Proof Let us take derivatives on both sides of the formula in Lemma 3.9(c). Since the integ-
rands are smooth and have compact support, we may as well integrate the derivatives of the
integrands. Using z as the differentiation variable instead of x , as well as partial integration,
we arrive at

DGε(x) =
∑

i∈I

∫

Si
Dx [ηε(x − z)]gi (z) dz

=
∑

i∈I

∫

Si ∩B(x,ε)

(−Dz)[ηε(x − z)]gi (z) dz

=
∑

i∈I

∫

Si
ηε(x − z)Dgi (z) dz

−
∑

i∈I

∫

∂(Si ∩B(x,ε))

ηε(x − z)gi (z)n(z)� dz

where the last term is a boundary integral, ∂(Si ∩B(x, ε)) stands for the topological boundary
of Si ∩ B(x, ε), i ∈ I , and n(z) denotes the outward pointing normal to ∂(Si ∩ B(x, ε)) at z.
To show the assertion for DGε(x) we have to prove that

∑

i∈I

∫

∂(Si ∩B(x,ε))

ηε(x − z)gi (z)n(z) dz (3.4)

vanishes. Note that in (3.4) it is sufficient to integrate over the codimension one parts of
∂(Si ∩ B(x, ε)), i ∈ I , since lower dimensional parts do not contribute to the value of the
integral. The codimension one parts either belong to ∂ B(x, ε) or to some set �i j with i �= j
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(compare (3.2)). For all z ∈ ∂ B(x, ε) the integrand vanishes due to ηε(x − z) = 0. Now
consider z ∈ �i j for some i, j ∈ I, i �= j . As an element of �i j ∩ Si , the outward pointing
normal at z is easily seen to be ni j (z) = �i j (z)/||�i j (z)|| with �i j (z) from (3.3) (note that
||�i j (z)|| �= 0 in view of LICQ at x̄ and the choice of ε). At the same time, z is an element

of �i j ∩ S j with outward pointing normal n ji (z) = −ni j (z). For the two corresponding
summands in (3.4) we obtain

∫

�i j ∩Si
ηε(x − z)gi (z)n

i j (z) dz +
∫

�i j ∩S j
ηε(x − z)g j (z)(−ni j (z)) dz

=
∫

�i j
ηε(x − z)(gi (z) − g j (z))n

i j (z) dz = 0

since gi − g j vanishes on �i j . In this way, all summands in (3.4) cancel each other, so that
the whole term vanishes. This shows the formula for DGε(x).

To derive the formula for the Hessian D2Gε(x) we take the Jacobian of ∇Gε(x) and, as
above, arrive at

D2Gε(x) =
∑

i∈I

∫

Si
ηε(x − z)D2gi (z) dz

−
∑

i∈I

∫

∂(Si ∩B(x,ε))

ηε(x − z)∇gi (z)n(z)� dz.

For the second term we can do the same manipulations as above, except that in the end the
terms

∫

�i j
ηε(x − z)(∇gi (z) − ∇g j (z))n(z)� dz

only necessarily vanish for �i j ∩ B(x, ε) = ∅. Because of
∫

�i j
ηε(x − z)(∇gi (z) − ∇g j (z))n(z)� dz =

∫

�i j
ηε(x − z)

�i j (z)�i j (z)�

||�i j (z)|| dz

this shows the assertion for D2Gε(x). �
3.3 A regularization of the KKT system for Pε and its continuous extension

We can now study the KKT system of Pε,

∇ f (x) − µ∇Gε(x) = 0 (3.5)

−Gε(x) = 0 (3.6)

where, in view of ∇ f (x̄) �= 0, the inequality constraint Gε(x) ≥ 0 is treated as binding. Our
aim is to show that this system has a unique solution for ε > 0 close to zero and x close to
x̄ . Unfortunately, the implicit function theorem cannot be applied straightforwardly to yield
this result, due to problems with the definition of the system and its Jacobian at ε = 0, as
well as regularity issues.

It turns out that instead we may study a related system which is ‘desingularized’ on the
normal space to M in x̄ . In fact, it is not hard to see that there exist neighborhoods U of x̄
and V of 0 ∈ R

p such that for each c ∈ V the function G is constant on the locally defined
manifold {x ∈ U | gI (x) = c}. Hence, Gε behaves smoothly along these manifolds locally
around x̄ . On the other hand, the restriction of G to the normal spaces of these manifolds
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locally around x̄ is nonsmooth, which corresponds to the fact the Gε has to smooth the non-
smooth fiber of M . This means that singularities of Gε only occur in normal directions and,
moreover, that one has to expect that the approximation of the nonsmooth function implies
blow ups in the curvature of the approximating smoothings.

It thus suffices to study how the location of the KKT point in the normal space is affected
by small perturbations of ε. For this reason, in the following we will investigate the case
p = n without loss of generality, that is, the number of possible active constraints is maximal
under LICQ, the tangent space Tx̄ M becomes trivial, and the normal space is R

n .
With R+ denoting the set of positive real numbers, we define the function

H : R+ × R
n × R → R

n × R, (ε, d, µ) �→
(∇ f (x̄ + εd) − µ∇Gε(x̄ + εd)

− 1
ε

Gε(x̄ + εd)

)

and study its zero set. For all ε > 0, since the mapping x(d) = x̄ + εd from R
n to R

n is
bijective, the system H(ε, d, µ) = 0 is equivalent to (3.5), (3.6). In particular, if for given
ε > 0 we find dε and µε with H(ε, dε, µε) = 0, then (xε, µε) with xε = x̄ + εdε solves
(3.5), (3.6).

For all ε > 0 the function H is obviously continuously differentiable with respect to
(d, µ), and its Jacobian is

J (ε, d, µ) := D(d,µ) H(ε, d, µ)

=
(

ε(D2 f (x̄ + εd) − µD2Gε(x̄ + εd)) −∇Gε(x̄ + εd)

−DGε(x̄ + εd) 0

)

.

Since we plan to apply the implicit function theorem to H(ε, d, µ) = 0 around some point
with ε̄ = 0, we must first make sure that H and J can be extended to continuous functions on
all of U × R

n × R, with some open neighborhood U of 0. For this reason we give alternative
formulae for Gε , DGε , and D2Gε:

Lemma 3.11 The following formulae hold for all d ∈ R
n and ε > 0 with ε(||d|| + 1) < R:

(a) Gε(x̄ + εd) =
∑

i∈I

∫

1
ε
(Si −x̄)

η(d − z)gi (x̄ + εz) dz,

(b) DGε(x̄ + εd) =
∑

i∈I

∫

1
ε
(Si −x̄)

η(d − z)Dgi (x̄ + εz) dz,

(c)

D2Gε(x̄ + εd) =
∑

i∈I

∫

1
ε
(Si −x̄)

η(d − z)D2gi (x̄ + εz) dz

− 1

ε

∑

i �= j∈I

∫

1
ε
(�i j −x̄)

η(d − z)
�i j (x̄ + εz)�i j (x̄ + εz)�

||�i j (x̄ + εz)|| dz.

Proof It is easily seen that for all d ∈ R
n , ε > 0 with ε(||d|| + 1) < R we may apply

Lemma 3.9 (c) and Proposition 3.10 at the point x = x̄ + εd .
To see part (a), we use Lemma 3.9 (c) to write

Gε(x̄ + εd) =
∑

i∈I

∫

Si
ηε(x̄ + εd − z)gi (z) dz

and transform the integrals by defining the new variable ζ = (z − x̄)/ε or, equivalently,
z = x̄ + εζ . Under this change of coordinates, for each i ∈ I the corresponding integral
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becomes
∫

1
ε
(Si −x̄)

ηε(εd − εζ )gi (x̄ + εζ ) εndζ =
∫

1
ε
(Si −x̄)

η(d − z)gi (x̄ + εz) dz,

where we used the definition of ηε from (2.5). This proves the assertion of part (a).
Parts (b) and (c) are shown along the same lines, using Proposition 3.10. The factor 1/ε

in front of the second term in the right hand side of part (c) is owed to the fact that the second
term is a boundary integral, so that the deformation by the change of coordinates is only
εn−1. �

The possibility to continuously extend H and J to arguments with ε = 0 depends on the
behavior of

�1(ε, d) = 1
ε

Gε(x̄ + εd),

�2(ε, d) = DGε(x̄ + εd),

�3(ε, d) = εD2Gε(x̄ + εd)

for ε ↘ 0. For the corresponding results we will need the linearizations of the sets from (3.1)
and (3.2),

Li = {ξ ∈ R
n | Dgi (x̄)ξ < Dg j (x̄)ξ, j ∈ I(i)}, i ∈ I, (3.7)


i j = {ξ ∈ R
n | Dgi (x̄)ξ = Dg j (x̄)ξ}, i, j ∈ I, i �= j. (3.8)

Lemma 3.12 For all d ∈ R
n define

�1(0, d) =
∑

i∈I

∫

Li
η(d − z)Dgi (x̄)z dz,

�2(0, d) =
∑

i∈I

∫

Li
η(d − z) dz Dgi (x̄),

�3(0, d) = −
∑

i �= j∈I

∫


i j
η(d − z) dz

�i j (x̄)�i j (x̄)�

||�i j (x̄)|| .

Then we have limε↘0 �k(ε, d) = �k(0, d) for 1 ≤ k ≤ 3.

Proof Let d ∈ R
n be arbitrary. We will use Lemma 3.11 to show the assertions. First we

study the behavior of the sets 1
ε
(Si − x̄), i ∈ I, for ε ↘ 0.

In fact, let i ∈ I and z ∈ 1
ε
(Si − x̄). This means

gi (x̄ + εz) < g j (x̄ + εz), j ∈ I(i)

or, equivalently,

gi (x̄ + εz) − gi (x̄)

ε
<

g j (x̄ + εz) − g j (x̄)

ε
, j ∈ I(i) .

Consequently, for ε ↘ 0 the vector z satisfies Dgi (x̄)z ≤ Dg j (x̄)z, j ∈ I(i) , and due to
LICQ, 1

ε
(Si − x̄) tends to Li (compare (3.7)), up to a set of codimension one (the boundary

of Li ). Analogously it is shown that the sets 1
ε
(�i j − x̄) tend to 
i j for ε ↘ 0.
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With Lemma 3.11(a) and using the fact that the supports of the integrands are contained
in the compact set B(d, 1) it follows that

�1(ε, d) = 1

ε

∑

i∈I

∫

1
ε
(Si −x̄)

η(d − z)gi (x̄ + εz) dz,

=
∑

i∈I

∫

1
ε
(Si −x̄)

η(d − z)
gi (x̄ + εz) − gi (x̄)

ε
dz

→
∑

i∈I

∫

Li
η(d − z)Dgi (x̄)z dz = �1(0, d) (ε ↘ 0),

and with Lemma 3.11(b) that

�2(ε, d) =
∑

i∈I

∫

1
ε
(Si −x̄)

η(d − z)Dgi (x̄ + εz) dz → �2(0, d) (ε ↘ 0).

From Lemma 3.11(c) we obtain

�3(ε, d) = ε
∑

i∈I

∫

1
ε
(Si −x̄)

η(d − z)D2gi (x̄ + εz) dz

−
∑

i �= j∈I

∫

1
ε
(�i j −x̄)

η(d − z)
�i j (x̄ + εz)�i j (x̄ + εz)�

||�i j (x̄ + εz)|| dz

→ −
∑

i �= j∈I

∫


i j
η(d − z) dz · �i j (x̄)�i j (x̄)�

||�i j (x̄)|| (ε ↘ 0).

�

Lemma 3.12 shows that the functions �k(|ε|, d), 1 ≤ k ≤ 3, are continuous on U × R
n for

some neighborhood U of 0. We may thus define the following continuous extensions of H
and J on U × R

n × R,

H(ε, d, µ) =
(∇ f (x̄ + |ε|d) − µ�2(|ε|, d)�

−�1(|ε|, d)

)

,

J (ε, d, µ) =
( |ε|D2 f (x̄ + |ε|d) − µ�3(|ε|, d) −�2(|ε|, d)�

−�2(|ε|, d) 0

)

,

with

H(0, d, µ) =
(∇ f (x̄) − µ�2(0, d)�

−�1(0, d)

)

,

J (0, d, µ) =
(−µ�3(0, d) −�2(0, d)�

−�2(0, d) 0

)

.

With the same techniques as above one can also show Dd�1(0, d) = �2(0, d) and
Dd�2(0, d)� = �3(0, d) for all d ∈ R

n , so that we have

D(d,µ) H(0, d, µ) = J (0, d, µ)

for all (d, µ) ∈ R
n × R. This means that the function H is continuous and partially contin-

uously differentiable with respect to (d, µ) on U × R
n × R.

To apply the implicit function theorem, we need to find a solution (d̄, µ̄) of H(0, d, µ) = 0
with nonsingular matrix J (0, d̄, µ̄).
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3.4 A solution of the regularized system

Let us start by finding a zero of the first component of H(0, d, µ), that is, to solve

0 = ∇ f (x̄) − µ�2(0, d)� = ∇ f (x̄) − µ
∑

i∈I

∫

Li
η(d − z) dz ∇gi (x̄). (3.9)

In view of (2.2) the appearing integrals should be related to the Lagrange multipliers λ̄i , i ∈
I . In fact, due to strict complementary slackness we may set

µ̄ =
∑

i∈I

λ̄i

and consider the normalized vector λ̄/µ̄. This vector is contained in the (n −1)−dimensional
standard simplex

Sn−1 =
{

λ ∈ R
n
∣
∣
∣
∣ λ ≥ 0,

n∑

i=1

λi = 1

}

.

The mapping T : R
n → R

n with components
∫

Li η(d − z) dz, i ∈ I , is easily seen to satisfy
T (d) ∈ Sn−1 for all d ∈ R

n . Hence, if we can show surjectivity of T from R
n to Sn−1, we

may choose some d̃ with T (d̃) = λ̄/µ̄ and solve (3.9) with (d̃, µ̄).

Proposition 3.13 The mapping T is surjective from R
n to Sn−1.

Proof We show that T is surjective from R
n to each stratum of Sn−1, where F is a stratum

of dimension k ∈ {0, . . . , n − 1} iff F = {λ ∈ Sn−1| λK c > 0, λK = 0} for some K ⊂ I
with |K | = n − 1 − k. Note that the topological closures of the strata are just the facets of
the polyhedron Sn−1.

Let F be a stratum of dimension zero, that is, F is a singleton with some unit vector ei ,
i ∈ I , as the only element. Due to LICQ, the sets Li , i ∈ I , are full-dimensional cones, so
that for each i ∈ I we can find some di ∈ R

n with B(di , 1) ⊂ Li . It follows T (di ) = ei ,
i ∈ I , that is, T is surjective from R

n to each zero dimensional stratum of Sn−1.
Next consider a stratum F of dimension one. Then its closure F coincides with the con-

vex hull Ei j := conv(ei , e j ) of two different unit vectors ei and e j , i, j ∈ I . We denote the
convex hull of their preimages di and d j in R

n by Di j := conv(di , d j ). By moving di and
d j sufficiently far away from the origin in their corresponding cones Li and L j , it is possible
to guarantee B(δ, 1) ⊂ Li ∪ L j for all δ ∈ Di j . Then the continuous function T maps the
line segment Di j to the line segment Ei j , that is, T (Di j ) ⊂ Ei j . Moreover, T maps the
endpoints of Di j to the endpoints of Ei j . The intermediate value theorem now guarantees
F ⊂ F = Ei j ⊂ T (Di j ). This entails that T is surjective from R

n to each one dimensional
stratum of Sn−1.

For any stratum F of dimension two or higher, we cannot use the intermediate value
theorem in the previous argument. Instead, we will use an argument from algebraic topology
and explain the idea in detail for a two-dimensional stratum F .

In fact, let F be a stratum of dimension two. Then F coincides with the convex hull
Ei jk := conv(ei , e j , ek) of three pairwise different unit vectors ei , e j , ek , i, j, k ∈ I .
As above we consider the convex hull Di jk := conv(di , d j , dk) of their preimages, and
move the points di , d j , dk sufficiently far away from the origin in their corresponding cones
Li , L j , Lk , such that B(δ, 1) ⊂ Li ∪ L j ∪ Lk holds for all δ ∈ Di jk . Then the continuous
function T maps the ‘triangle’ Di jk to the ‘triangle’ Ei jk .
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From a topological point of view, we may identify Di jk with Ei jk without loss of gener-
ality, so that T becomes a continuous mapping from Ei jk to itself that is, T (Ei jk) ⊂ Ei jk .
Note that T is constant on the vertices of Ei jk , and that T maps each edge of Ei jk surjec-
tively to itself. In particular, we have ∂ Ei jk ⊂ T (Ei jk). Moreover, with the linear homotopy
h : [0, 1] × Ei j → Ei j , (t, x) �→ t x + (1 − t)T (x) the restriction of T to the edge Ei j

is seen to be homotopic to the identity function. As the same holds for the other edges, the
restriction of T to ∂ Ei jk is homotopic to the identity function.

Assume that T : Ei jk → Ei jk is not surjective. Then some point λ from the interior
int(Ei jk) of Ei jk does not belong to T (Ei jk). The latter set is compact as the continuous
image of a compact set, so that a whole open neighborhood � ⊂ int(Ei jk) of λ does not
belong to T (Ei jk). Due to ∂ Ei jk ⊂ T (Ei jk), this means that there exists a continuous map-
ping ϕ from T (Ei jk) to ∂ Ei jk which coincides with the identity mapping on ∂ Ei jk , that is,
∂ Ei jk is a retract of T (Ei jk).

As a consequence, the restriction of the composition ϕ ◦ T : Ei jk → ∂ Ei jk to ∂ Ei jk is
homotopic to the identity function, that is, it is a weak retraction. However, if ∂ Ei jk was a
weak retract of Ei jk , then the one-dimensional sphere would also be a weak retract of the
two-dimensional ball. This is not the case by Corollary 4 in Sect. 4.7 of [9] and its preceding
remark on weak retracts.

Hence T is also surjective from Di jk to Ei jk , so that we obtain F ⊂ F = Ei jk ⊂ T (Di jk).
This completes the proof for surjectivity of T from R

n to each two-dimensional stratum of
Sn−1. Surjectivity of T from R

n to each higher dimensional stratum of Sn−1 is shown
along the same lines, using that the (k − 1)−dimensional sphere is not a weak retract of the
k−dimensional ball for any k ≥ 1 ([9]). �

We choose some d̃ with T (d̃) = λ̄/µ̄. In more explicit terms this means

λ̄i
∑

i∈I λ̄i
=

∫

Li
η(d̃ − z) dz , i ∈ I. (3.10)

In the next step we show that we can change d̃ along a certain direction so that both compo-
nents of H vanish.

Lemma 3.14

(a) For each i ∈ I let Ki denote the common null space of the vectors Dgi (x̄) − Dg j (x̄),
j ∈ I(i). Then there exists some vector w ∈ R

n \ {0} such that w spans all spaces
Ki , i ∈ I .

(b) With w from part (a) consider the functions

γ 1 : R → R, t �→ �1(0, d̃ + tw),

γ 2 : R → R
n, t �→ �2(0, d̃ + tw).

Then γ 1 is linear and not constant, whereas γ 2 is constant.
(c) There exists some t̄ ∈ R such that d̄ := d̃ + t̄w satisfies �1(0, d̄) = 0 and �2(0, d̄) =

�2(0, d̃).

Proof For any i ∈ I , due to LICQ the n − 1 vectors Dgi (x̄) − Dg j (x̄), j ∈ I(i) , are linearly
independent and have, thus, a one dimensional common null space K i . Let wi be a basis
vector of K i . Then, up to scaling, wi is determined by the equations

Dg1(x̄)w = · · · = Dgn(x̄)w (3.11)
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which do not depend on i . Hence wi can be chosen independently of i ∈ I , which shows
part (a).

To see the linearity of γ 1 in part (b), note that for any t ∈ R a simple change of coordinates
yields

γ 1(t) = �1(0, d̃ + tw) =
∑

i∈I

∫

Li
η(d̃ + tw − z)Dgi (x̄)z dz,

=
∑

i∈I

∫

Li −tw
η(d̃ − z)Dgi (x̄)(z + tw) dz.

From the definition of w we immediately conclude Li − tw = Li for all i ∈ I and arrive at

γ 1(t) =
∑

i∈I

∫

Li
η(d̃ − z)Dgi (x̄)(z + tw) dz

= �1(0, d̃) + t
∑

i∈I

∫

Li
η(d̃ − z) dz Dgi (x̄)w

= �1(0, d̃) + t Dg1(x̄)w,

where (3.11) allows us to replace Dgi (x̄)w by Dg1(x̄)w for all i ∈ I . This shows the linearity
of γ 1. If γ 1 was a constant function, we would have Dg1(x̄)w = 0 and, in view of (3.11)
also Dgi (x̄)w = 0 for all i ∈ I . However, due to LICQ w then has to vanish, in contradiction
to its definition.

With the same technique we can show

γ 2(t) = �2(0, d̃ + tw) = �2(0, d̃) = γ 2(0)

for all t ∈ R, which completes the proof of part (b).
Part (c) immediately follows from part (b) with t̄ = −�1(0, d̃)/(Dg1(x̄)w). �

With d̄ from Lemma 3.14 (c) we finally have H(0, d̄, µ̄) = 0.

3.5 The implicit function

To apply the implicit function theorem, it remains to be shown that the Jacobian J (0, d̄, µ̄)

is nonsingular.
Recall that, due to strict complementary slackness, all λ̄i = µ̄

∫
Li η(d̄ − z) dz, i ∈ I are

strictly positive (compare (3.10)). Consequently, the intersection of the support B(d̄, 1) of

η(d̄ − z) with each set Li has positive measure. Then also the intersections of B(d̄, 1) with
the mutual boundaries parts of Li and L j in 
i j have positive (n −1)−dimensional measure
for all i, j ∈ I, i �= j . This means

ci j (d̄) :=
∫


i j
η(d̄ − z) dz > 0 for all i, j ∈ I, i �= j. (3.12)

Lemma 3.15 The matrix J (0, d̄, µ̄) is nonsingular.

Proof We have

J (0, d̄, µ̄) =
(−µ̄�3(0, d̄) −�2(0, d̄)�

−�2(0, d̄) 0

)
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with

−µ̄�3(0, d̄) = µ̄
∑

i �= j∈I

ci j (d̄)
�i j (x̄)�i j (x̄)�

||�i j (x̄)||

and

�2(0, d̄)� =
∑

i∈I

∫

Li
η(d̄ − z) dz ∇gi (x̄) =

∑

i∈I

λ̄i∇gi (x̄) = ∇ f (x̄).

Hence by the structure lemma (see, e.g. [5, Theorem 2.3.2]), if Y is some (n, n − 1)−matrix
whose columns form a basis of ker(D f (x̄)), then J (0, d̄, µ̄) is nonsingular if and only if

∑

i �= j∈I

ci j (d̄)
Y ��i j (x̄)�i j (x̄)�Y

||�i j (x̄)||

is nonsingular (where we also used µ̄ > 0). In view of (3.12) the latter matrix clearly is
positive semi-definite. In the following we will show that it is actually positive definite. In
fact, let θ ∈ R

n−1 with

0 = θ�
⎛

⎝
∑

i �= j∈I

ci j (d̄)
Y ��i j (x̄)�i j (x̄)�Y

||�i j (x̄)||

⎞

⎠ θ =
∑

i �= j∈I

ci j (d̄)
(�i j (x̄)�Y θ)2

||�i j (x̄)|| .

Due to (3.12), for all i, j ∈ I, i �= j , we obtain �i j (x̄)�Y θ = 0, that is

Dg1(x̄)Y θ = · · · = Dgn(x̄)Y θ. (3.13)

Thus, by the definition of Y and (2.2) we also have

0 = D f (x̄)Y θ =
∑

i∈I

λ̄i Dgi (x̄)Y θ = µ̄Dg j (x̄)Y θ

for all j ∈ I . It follows Y θ ∈ ker(Dg(x̄)) = {0} and, hence, θ = 0. This shows the asser-
tion. �

We may now apply the version of the implicit function theorem from [1] to obtain a con-
tinuous function (d(ε), µ(ε)) with (d(0), µ(0)) = (d̄, µ̄), defined locally around ε̄ = 0,
such that (d(ε), µ(ε)) is the locally unique solution of H(ε, d, µ) = 0. As explained at
the beginning of Section 3.3, the continuous function (x(ε), µ(ε)) with x(ε) = x̄ + εd(ε)

satisfies (x(0), µ(0)) = (x̄, µ̄), and it is the locally unique solution of (3.5), (3.6).
In other words, for sufficiently small ε > 0, around x̄ the point xε := x(ε) is the locally

unique KKT point of Pε, and the corresponding Lagrange multiplier is µ(ε). This shows the
first assertion of Theorem 3.7 (c).

3.6 The Morse index

Finally we prove the second assertion of Theorem 3.7 (c). Note that in the case p = n the
Morse index of x̄ vanishes. For continuity reasons, LICQ holds at x(ε) for sufficiently small
ε > 0. Due to µ̄ = ∑

i∈I λ̄i > 0 and continuity of the function µ, for sufficiently small
ε > 0 we also have µ(ε) > 0, that is, strict complementary slackness is also satisfied at x(ε).

It remains to study the nonsingularity of the Jacobian of (3.5), (3.6) at x(ε) and the Morse
index of x(ε). Note that this is not the Jacobian J of the regularized system. Instead, for
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ε > 0 the Jacobian of (3.5), (3.6) at the KKT point is
(

D2 f (x(ε)) − µ(ε)D2Gε(x(ε)) −∇Gε(x(ε))

−DGε(x(ε)) 0

)

.

Due to LICQ at x(ε) the Jacobian is nonsingular if and only if the restriction of the Hessian
to the kernel of DGε(x(ε)),

(
D2 f (x(ε)) − µ(ε)D2Gε(x(ε))

) |ker(DGε(x(ε))) , (3.14)

is, and the number of negative eigenvalues of the latter matrix is the Morse index of x(ε).
Since (x(ε), µ(ε)) satisfies (3.5), and because of µ(ε) > 0 for sufficiently small ε > 0, the
matrix in (3.14) has the same inertia as

(
D2 f (x(ε)) − µ(ε)D2Gε(x(ε))

) |ker(D f (x(ε))) . (3.15)

As ∇ f is a continuous function, for sufficiently small ε > 0 the inertia of the matrix in (3.15)
also coincides with that of

(
D2 f (x(ε)) − µ(ε)D2Gε(x(ε))

) |ker(D f (x̄)) , (3.16)

provided that we can show nonsingularity of this matrix. Let Y be some (n, n − 1)−matrix
whose columns form a basis of ker(D f (x̄)). Then the matrix in (3.16) can be written as

Y �(
D2 f (x(ε)) − µ(ε)D2Gε(x(ε))

)
Y. (3.17)

By Lemma 3.11, and using x(ε) = x̄ + εd(ε), we have

D2Gε(x(ε)) =
∑

i∈I

∫

1
ε
(Si −x̄)

η(d(ε) − z)D2gi (x̄ + εz) dz

− 1

ε

∑

i �= j∈I

∫

1
ε
(�i j −x̄)

η(d(ε) − z)
�i j (x̄ + εz)�i j (x̄ + εz)�

||�i j (x̄ + εz)|| dz,

so that we may write

Y �(
D2 f (x(ε)) − µ(ε)D2Gε(x(ε))

)
Y = A(ε) + 1

ε
B(ε)

with

A(ε) = Y �
(

D2 f (x(ε)) − µ(ε)
∑

i∈I

∫

1
ε
(Si −x̄)

η(d(ε) − z)D2gi (x̄ + εz) dz

)

Y,

B(ε) = µ(ε) Y �
⎛

⎝
∑

i �= j∈I

∫

1
ε
(�i j −x̄)

η(d(ε) − z)
�i j (x̄ + εz)�i j (x̄ + εz)�

||�i j (x̄ + εz)|| dz

⎞

⎠ Y.

With the techniques from the proof of Lemma 3.12, and using limε↘0 d(ε) = d̄ as well as
T (d̄) = λ̄/µ̄, we can show

A(0) := lim
ε↘0

A(ε) = Y �
(

D2 f (x̄) −
∑

i∈I

λ̄i D2gi (x̄)

)

Y,

B(0) := lim
ε↘0

B(ε) = µ̄ Y �
⎛

⎝
∑

i �= j∈I

ci j (d̄)
�i j (x̄)�i j (x̄)�

||�i j (x̄)||

⎞

⎠ Y
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with ci j from (3.12). In the proof of Lemma 3.15 we have seen that B(0) is positive definite,
so that for sufficiently small ε > 0 the eigenvalues of B(ε) are positive and bounded away
from zero. At the same time, the eigenvalues of A(ε) are contained in some bounded set, so
that for all sufficiently small ε > 0 the matrix A(ε) + 1

ε
B(ε) is positive definite.

This means that for all sufficiently small ε > 0 the matrix in (3.14) is positive definite, so
that the Jacobian of (3.5), (3.6) at x(ε) is nonsingular, and the Morse index of x(ε) vanishes.
This completes the proof of Theorem 3.7 (c).

Acknowledgements We thank the anonymous referees for precise and substantial remarks which lead to a
significantly improved version of this manuscript. The second author gratefully acknowledges support through
a Heisenberg grant of the Deutsche Forschungsgemeinschaft.

References

1. Deimling, K.: Nichtlineare Gleichungen und Abbildungsgrade. Springer, Heidelberg (1974)
2. Ermoliev, Y.M., Norkin, V.I., Wets, R.J.B.: The minimization of semicontinuous functions: mollifier

subgradients. SIAM J. Control Optim. 33, 149–167 (1995)
3. Evans L.C.: Partial Differential Equations, American Mathematical Society, Providence, Rhode Island

(1998)
4. Guerra Vasquez, F., Günzel, H., Jongen, H.Th.: On logarithmic smoothing of the maximum function. An.

Oper. Res. 101, 209–220 (2001)
5. Jongen, H.Th., Meer, K., Triesch, E.: Optimization Theory. Kluwer, Boston (2004)
6. Jongen, H.Th., Ruiz Jhones, A. : Nonlinear optimization: On the min-max digraph and global smooth-

ing. In: Ioffe, A., Reich, S., Shafrir, I. (eds.) Calculus of Variations and Differential Equations, Chapman
and Hall / CRC Research Notes in Mathematics Series, vol. 410, pp. 119–135. CRC Press, Boca Raton
FL (1999)

7. Jongen, H.Th., Stein O.: Smoothing by Mollifiers. Part I: Semi-infinite Optimization. J Glob Optim.
doi:10.1007/s10898-007-9232-3

8. Mangasarian, O.L., Fromovitz, S.: The Fritz John necessary optimality conditions in the presence of
equality and inequality constraints. J Math. Anal. Appl. 17, 37–47 (1967)

9. Spanier, E.H.: Algebraic Topology. McGraw Hill, New York (1966)

123

10.1007/s10898-007-9232-3

	Smoothing by mollifiers. Part II: nonlinear optimization
	Abstract
	Introduction
	Preliminaries
	Regularity concepts
	Mollifiers
	The smoothing approach
	Main results
	Formulae for G, its gradient, and its Hessian
	A regularization of the KKT system for P and its continuous extension
	A solution of the regularized system
	The implicit function
	The Morse index
	Acknowledgements


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


